Enhancing Emergency Room Response through Hands-Free Augmented Reality Assistance

Jonathan Segal¹, Jalynn Nicoly², Connor Pugh¹, Francisco Ortega², Angelique Taylor¹

- 1. Artificial Intelligence and Robotics Lab, Cornell Tech
- 2. Natural User Interaction Lab, Colorado State University

Introduction

The Emergency Room (ER) is a high-stress environment where healthcare workers (HCWs) must manage multiple tasks simultaneously with precision [1]. Augmented reality head-mounted displays can assist with such tasks [2].

Co-design research has been conducted for clinical teams to improve teamwork [3]. This study expands upon prior work through using these participatory methods to design AR-HMD interfaces for HCWs.

Our goal is to understand AR-HMD's role in enhancing decision-making and teamwork in emergency medical care. Our primary interest is interface design and hands free interaction enabling better patient care.

M AIRLAB

We conducted semi-structured interviews with HCWs. The interviewer explained the study's purpose and what augmented reality can accomplish.

Methods

Conducted co-design studies of AR-HMD applications in Unity with 12 HCW participants. The low-fidelity prototypes provided context to spatially understand the interfaces and draw insights on the design preferences of HCWs.

Findings

Below are selected results from the interviews:

Role and task tracking

- Display name, title, and role in a visual above the HCWs head.
- Keep track of tasks outside of the field of view of the AR-HMD wearer.

Automatic dosage calculation

 Auto-populate medication dose and concentration by verbalizing medication name.

Calculate doses; age and weight (for pediatrics).

<u>Interactive time management</u>

- Timers for tracking ie. CPR, EPI, Shock
- The timer's color should change after a set time to indicate action is needed.

Medical records/ Diagnosis

- Connect with EMR for patient information, history, and medication list.
- Assist with potential pathways and considerations for diagnosis.

AR-HMD Design Concepts

Customization

Minimize Visual **Distraction**

Information Relevance

Transparency

Target Wearer

Reliability

Automation

Minimize Interaction Distraction

Record Keeping

Placement

Closed-Loop

Verification

Visual

Privacy Protections

Discussion

- These guidelines will hopefully lead to functional and intuitive AR-HMD applications that minimize cognitive load and maximize user engagement which is essential in high-pressure environments such as acute care setting like the ED [4].
- ER procedures such as resuscitations are complex. AR-HMD's can help, but it risks missing crucial information or causing distractions. Our study found that **quick** access to key information and proper feedback could prove essential, with design guidelines varying by situation and HCW specialization.

Future Work

- We plan to explore various other AR-HMD applications in a similar way and to **test the prototypes** in medical simulations such as the Base Camp event at Weill Cornell Medicine.
- While currently focused on in-hospital care, we are excited to extend our work to pre-hospital care. We envision using AR and assistive technology for emergency medical services, benefiting both field and ambulance settings.

References

1. Gualano, Maria Rosaria et al. "The Burden of Burnout among Healthcare Professionals of Intensive Care Units and Emergency Departments during the COVID-19 Pandemic: A Systematic Review." International journal of environmental research and public health vol. 18,15 8172. 2 Aug. 2021, doi:10.3390/ijerph18158172

2. Eckert M, Volmerg JS, Friedrich CM. Augmented Reality in Medicine: Systematic and Bibliographic Review. JMIR Mhealth Uhealth. 2019 Apr 26;7(4):e10967. doi: 10.2196/10967. PMID: 31025950; PMCID: PMC6658230.

3. Angela Mastrianni, Lynn Almengor, and Aleksandra Sarcevic. 2022. Alerts as Coordination Mechanisms: Implications for Designing Alerts for Multidisciplinary and Shared Decision Making. Proc. ACM Hum.-Comput. Interact. 6, GROUP, Article 9 (January 2022), 14 pages. https://doi.org/10.1145/3492828

4. Ricci, Serena et al. "Viewpoint: Virtual and Augmented Reality in Basic and Advanced Life Support Training." *JMIR serious games* vol. 10,1 e28595. 23 Mar. 2022, doi:10.2196/28595

